Principles of Macroeconomics: A Production Economy Part 2
Class 5

Alex Houtz
September 9, 2025

University of Notre Dame

#### Overview

- ► Announcements:
  - You should be able to do LC 7 and GH 7
  - You should be able to do most of LC 9 and GH 9 (due September 12th at 11:59pm)
- ► Topics:
  - Recap Growth Model
  - Development Accounting
- ► Readings:
  - Chapters 9.3-9.4

## Production Function Recap

► We used the Cobb-Douglas Production Function:

$$Y = AK^{\alpha}L^{1-\alpha}$$

- ▶ The  $\alpha$  and  $1-\alpha$  structure in the exponents gives constant returns to scale
  - 2x inputs → 2x output
- ► Optimization gave:
  - MPL:  $\frac{\partial Y}{\partial L} \ge 0$
  - MPK:  $\frac{\partial Y}{\partial L} \ge 0$
  - ullet But with diminishing marginal products: as L/K increase, MPL/MPK decrease

#### Model Overview

- 1. The Production Function ✓
- 2. Factor Supply ✓
  - Fixed endowment of labor:  $L = \bar{L}$
  - Fixed endowment of capital:  $K = \bar{K}$
- 3. Producer behavior ✓
  - Competitive producers maximize profits
  - These producers demand capital and labor
- 4. Equilibrium
  - Set supply = demand
  - Solve for prices and output

### Equilibrium

- ▶ Producer decisions are in fact *demand* curves
  - $\downarrow w \longrightarrow \uparrow L$
  - $\bullet \downarrow r \longrightarrow \uparrow K$
- ► Producers have downward-sloping demand for *K* and *L*
- ► We fixed the supply of *K* and *L*
- ► We now equate supply and demand

# Graphical Equilibrium



#### Practice Problems

Suppose that A=2,  $\alpha=1/3$ ,  $\bar{K}=100$ ,  $\bar{L}=50$ , and p=1. Let the production function be a constant returns-to-scale Cobb Douglas function

- (1) Compute Y
- (2) Derive firm demand for capital and labor (no need to take derivatives)
- (3) Find the factor prices r and w
- (4) Verify that capital expenditure relative to output is  $\alpha$ . Verify that labor expenditure relative to output is  $1-\alpha$
- (5) Suppose A increases by 10%. By what percentage do Y, r, and w change?

#### Solutions

- (1)  $Y = 2 \times 100^{1/3} \times 50^{2/3} \approx 126$
- (2) The profit function is:  $\Pi = pY wL rK$ . Using the derivatives with respect to K and L from class, we get that MB = MC:

$$\frac{\partial \Pi}{\partial K} : r = \alpha A K^{\alpha - 1} L^{1 - \alpha}$$
$$\frac{\partial \Pi}{\partial L} : w = (1 - \alpha) A K^{\alpha} L^{-\alpha}$$

(3) Plug-in our specific calibration:

$$r = \frac{1}{3} \times 2 \times 100^{-2/3} \times 50^{2/3} \approx 0.42$$
$$w = \frac{2}{3} \times 2 \times 100^{1/3} \times 50^{-1/3} \approx 1.68$$

(4) Plug-in our solutions:

$$\alpha = \frac{rK}{pY}$$

$$\frac{1}{3} = \frac{0.42 \times 100}{126}$$

$$\frac{1}{3} = \frac{1}{3} \checkmark$$

$$1 - \alpha = \frac{wL}{pY}$$

$$\frac{2}{3} = \frac{1.68 \times 50}{126}$$

$$\frac{2}{3} = \frac{2}{3} \checkmark$$

(5) For 
$$Y: 100 \times \frac{(1.1)A_0K^{\alpha}L^{1-\alpha} - A_0K^{\alpha}L^{1-\alpha}}{A_0K^{\alpha}L^{1-\alpha}} = 10\%$$
  
For  $r: 100 \times \frac{\alpha(1.1)A_0K^{\alpha-1}L^{1-\alpha} - A_0K^{\alpha-1}L^{1-\alpha}}{A_0K^{\alpha-1}L^{1-\alpha}} = 10\%$   
For  $w: 100 \times \frac{(1-\alpha)(1.1)A_0K^{\alpha}L^{-\alpha} - (1-\alpha)A_0K^{\alpha}L^{-\alpha}}{(1-\alpha)A_0K^{\alpha}L^{-\alpha}} = 10\%$ 

### RGDP per Capita

- ► Remember that RGDP per capita (or per person) is our measure of the standard of living
- ► To proxy this, we will assume that workers = population
- ► So divide output by labor:

$$Y = AK^{\alpha}L^{1-\alpha}$$
$$\frac{Y}{L} = A\frac{K^{\alpha}}{L}$$

▶ If we denote lower-case letters as "x per capita", then:

$$y = Ak^{\alpha}$$

## Productivity and Capital Intensity

- $ightharpoonup y = Ak^{\alpha}$ 
  - A: productivity
    - More productive economies are richer
  - k: capital per person
    - Workers equipped with more capital produce more
    - But there's diminishing returns doubling capital per person does not double output per person

### ► This model has a lot of assumptions...

- Production is Cobb-Douglas
- Constant returns to scale
- Perfectly competitive factor markets
- Perfectly inelastic supply of factors
- Closed economy
- Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

- ► This model has a lot of assumptions...
  - Production is Cobb-Douglas
  - Constant returns to scale
  - Perfectly competitive factor markets
  - Perfectly inelastic supply of factors
  - Closed economy
  - Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

- ► This model has a lot of assumptions...
  - Production is Cobb-Douglas
  - Constant returns to scale
  - Perfectly competitive factor markets
  - Perfectly inelastic supply of factors
  - Closed economy
  - Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

- ► This model has a lot of assumptions...
  - Production is Cobb-Douglas
  - Constant returns to scale
  - Perfectly competitive factor markets
  - Perfectly inelastic supply of factors
  - Closed economy
  - Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

- ► This model has a lot of assumptions...
  - Production is Cobb-Douglas
  - Constant returns to scale
  - Perfectly competitive factor markets
  - Perfectly inelastic supply of factors
  - Closed economy
  - Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

- ► This model has a lot of assumptions...
  - Production is Cobb-Douglas
  - Constant returns to scale
  - Perfectly competitive factor markets
  - Perfectly inelastic supply of factors
  - Closed economy
  - Etc, etc
- ▶ But is it useful still? Can it make sense of the data
  - A model must make simplifying assumptions a good model uses assumptions that:
    - Clarify the logic
    - Can be checked by data (either directly or indirectly)
    - Is useful even when the assumptions aren't exactly met

# **Development Accounting**

► To test the model, we will study cross-country income differences using the production function:

$$y=Ak^{\frac{1}{3}}$$

- ▶ Data:
  - $y \equiv \text{real GDP per capita}$
  - $k \equiv \text{capital per capita}$
  - Use data from the World Bank and Penn World Tables
- ► What about *A*?
  - (1) Assume A is the same across all countries, set A=1
  - (2) Let A differ, use model to back-out A
    - We will use (1) first

#### Predicted Income Differences



# Compare to Data

| Country        | Observed capital per person | Predicted GDP per Capita | Observed GDP per Capita |
|----------------|-----------------------------|--------------------------|-------------------------|
| United States  | 1                           | 1                        | 1                       |
| Burundi        | 0.007                       | 0.193                    | 0.012                   |
| Brazil         | 0.288                       | 0.66                     | 0.231                   |
| Switzerland    | 1.56                        | 1.16                     | 1.133                   |
| China          | 0.331                       | 0.692                    | 0.221                   |
| Spain          | 1.146                       | 1.047                    | 0.652                   |
| United Kingdom | 1.003                       | 1.001                    | 0.729                   |
| India          | 0.119                       | 0.492                    | 0.103                   |
| Italy          | 1.355                       | 1.106                    | 0.653                   |
| Japan          | 0.898                       | 0.965                    | 0.625                   |
| South Africa   | 0.229                       | 0.612                    | 0.202                   |

# Graphically



So our model thinks countries should be richer than they really are!

# Marginal Product of Capital

▶ Recall the production function: low  $k \longrightarrow high MPK$ 

$$MPK = p\left[\frac{\partial Y}{\partial K}\right] = \frac{p}{3}Ak^{-2/3}$$

- ► So capital scarce countries should have high MPK. Is this what we see?
- ▶ Puzzle 1: Economists have calculated MPK for many countries. We find:
  - Rich countries: 8.4%
  - Poor countries: 6.9%
- ▶ Puzzle 2: Why isn't capital going to poor countries?
  - Low  $k \longrightarrow \text{high returns to investment}$
  - So *k* should go to poor countries
  - Not so (Lucas Paradox)

#### **Evaluation**

- ightharpoonup Success: differences in k explains some of the differences in y across countries
- ightharpoonup Failure: differences in k don't explain most of the differences in y
  - Countries are poorer than expected
  - Returns to capital are actually lower in poor countries
- ▶ What should we do? What key assumption did we make?

# Development Accounting Try 2

- ► A is also defined as TFP Total Factor Productivity
- ► It is essentially a parameter that tells us how effective a country is at turning *K* and *L* into *Y*
- ► Revisit the production function:

$$y = Ak^{1/3}$$

▶ If k doesn't explain the differences in y, maybe A can?

Problem: How do we measure A?

- ► There is no "TFP" object out there
- ► So what do we do? We measure TFP as a residual:

$$A = \frac{y}{k^{1/3}}$$

► Essentially, A becomes the part of productivity that we don't understand

# Implied TFP

| Country        | Observed GDP per person | Observed capital per person | Implied TFP |
|----------------|-------------------------|-----------------------------|-------------|
| United States  | 1                       | 1                           | 1           |
| Brazil         | 0.231                   | 0.288                       | 0.35        |
| Burundi        | 0.012                   | 0.007                       | 0.061       |
| China          | 0.221                   | 0.331                       | 0.319       |
| India          | 0.103                   | 0.119                       | 0.21        |
| Italy          | 0.653                   | 1.355                       | 0.591       |
| Japan          | 0.625                   | 0.898                       | 0.648       |
| South Africa   | 0.202                   | 0.229                       | 0.33        |
| Spain          | 0.652                   | 1.146                       | 0.623       |
| Switzerland    | 1.133                   | 1.56                        | 0.977       |
| United Kingdom | 0.729                   | 1.003                       | 0.728       |

#### US vs. China



## Graphically



### Capital vs. TFP

- ightharpoonup Is k or A more important in this model?
- ▶ If we compare the five richest and five poorest economies:

$$\underbrace{\frac{y_{rich}}{y_{poor}}}_{126} \approx \underbrace{\frac{A_{rich}}{A_{poor}} \left(\frac{k_{rich}}{k_{poor}}\right)^{1/3}}_{5}$$

- ► TFP accounts for roughly 80% of the income differences
- ► *k* accounts for only 20%
- ► Is this a good model?

#### Practice Problems

Suppose output per worker and capital per worker are as given in the chart below.

| Country   | У    | k    |
|-----------|------|------|
| U.S.      | 1.00 | 1.00 |
| Country P | 0.15 | 0.08 |
| Country R | 1.20 | 1.40 |

- (1) Compute TFP for country P and country R
- (2) Compute the MPK for countries P and R relative to the US. Where should capital flow?
- (3) Decompose the income gap between P and the US into contributions from TFP and capital.
- (4) Suppose  $A_P$  jumps to 1. What is the percentage increase in  $y_P$ ?
- (5) Find  $k_P^*$  such that MPK $_P = MPK_{US}$ , then compute  $y_P^*$  and the percent rise vs. today.
- (6) What is a friction that might explain large income gaps but only modest MPK gaps? Does this friction primarily impact the TFP gap or the capital gap?

#### Solutions

(1) We use the Cobb-Douglas form we assumed for the production function:

$$A_j = y_j k_j^{-1/3}$$

Plugging in the numbers from the table:

$$A_P = y_P k_P^{-1/3}$$
  $A_R = y_R k_R^{-1/3}$   
= 0.15 × 0.08<sup>-1/3</sup> = 1.20 × 1.40<sup>-1/3</sup>  
 $\approx 0.35$   $\approx 1.07$ 

(2) The MPK is  $\frac{1}{3}A_jk_i^{-2/3}$ . Apply this to our problem:

$$MPK_{P} = \frac{1}{3}A_{P}k_{P}^{-2/3} \qquad MPK_{R} = \frac{1}{3}A_{R}k_{R}^{-2/3}$$

$$= \frac{1}{3} \times 0.35 \times (0.08)^{-2/3} \qquad = \frac{1}{3} \times 1.07 \times (1.40)^{-2/3}$$

$$\approx 0.625 \qquad \approx 0.286$$

We also need MPK for the US:

$$\mathsf{MPK}_{US} = \frac{1}{3} A_{US} k_{US}^{-2/3} = \frac{1}{3}$$

Now calculate the ratios:

$$\frac{\mathsf{MPK}_P}{\mathsf{MPK}_{\mathit{US}}} = \frac{0.625}{0.33} \qquad \qquad \frac{\mathsf{MPK}_R}{\mathsf{MPK}_{\mathit{US}}} = \frac{0.286}{0.33} \\ \approx 1.88 \qquad \qquad \approx 0.86$$

(3) We use the income ratio formula: 
$$\frac{y_j}{y_i} = \frac{A_j}{A_i} \left(\frac{k_j}{k_i}\right)^{\frac{1}{3}}$$
. So:

$$\frac{y_{US}}{y_P} = \frac{A_{US}}{A_P} \left(\frac{k_{US}}{k_P}\right)^{1/3}$$

$$\frac{1}{0.15} = \frac{1}{0.35} \left(\frac{1}{0.08}\right)^{1/3}$$

$$6.67 \approx 2.87 \times 2.32$$

$$\ln(6.67) \approx \ln(2.87) + \ln(2.32)$$

Decompose in percent terms:

A: 
$$100 \times \frac{\ln(2.87)}{\ln(6.67)}$$
 k:  $100 \times \frac{\ln(2.32)}{\ln(6.67)}$   $\approx 55.6\%$   $\approx 44.4\%$ 

(4) Calculate the new GDP per worker:

$$y_P' = 1 \times 0.08^{1/3} \approx 0.43$$

In percent gain:

$$g_y = 100 \times \frac{0.43 - 0.15}{0.15} \approx 187\%$$

(5) Set MPK<sub>P</sub> equal to MPK<sub>US</sub>:

$$\alpha A_P (k_P^*)^{\alpha - 1} = A_{US} k_{US}^{\alpha - 1}$$

$$k_P^* = \left(\frac{A_{US}}{A_P}\right)^{\frac{1}{\alpha - 1}} k_{US}$$

$$= \left(\frac{1}{0.35}\right)^{-\frac{3}{2}}$$

$$\approx 0.205$$

Now find  $y_P^*$ :

$$y_P^* = A_P (k_p^*)^{1/3}$$
  
= 0.35 × (0.205)<sup>1/3</sup>  
 $\approx 0.205$ 

In percent growth:

$$g_{\rm Y} = 100 \times \frac{0.205 - 0.15}{0.15} \approx 36.9\%$$

(6) Institutional/technology adoption barriers (lowers A): weak enforcement, corruption, managerial gaps; extra k yields limited gains

Risk and intermediation costs (keeps k low): sovereign/currency risk and shallow finance raise required returns, limiting capital inflows even with high gross MPK – so MPK might be high, but investors won't invest in the country

#### Summary

- ► Simplified production economy, applied to data, predicts that TFP matters more than capital per worker
- ▶ Natural question: how do we increase TFP?
- ► More on this on Thursday